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Abstract—In this paper, we propose to extract depth infor-
mation from a monocular video sequence. When estimating
the depth of the current frame, the bidirectional energy
minimization in our scheme considers both the previous frame
and next frame, which promises a much more robust depth
map and reduces the problems associated with occlusion to
a certain extent. After getting an initial depth map from
bidirectional energy minimization, we further refine the depth
map using segmentation by assuming similar depth values
in one segmented region. Different from other segmentation
algorithms, we use initial depth information together with the
original color image to get more reliable segmented regions.
Finally, detecting the sky region using a dark channel prior
is employed to correct some possibly wrong depth values
for outdoor video. The experimental results are much more
accurate compared with the state-of-the-art algorithms.
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I. INTRODUCTION

Depth extraction is a key problem for many research
topics, such as robust navigation, scene understanding and
3D reconstruction. Based on the number of views employed,
the depth extraction algorithms are generally classified into
three groups. That is, depth extraction from monocular
video, stereo video and multiview video. Generally the video
contents will be created directly into some suitable 3D
format. However, the conversion of 2D content is highly
interesting because of the large amounts of existing 2D video
content, the tremendous production cost and the complicated
process for 3D video generation. Hence, extracting depth
information from monocular video will be the focus of our
paper.

To estimate the depth information from a monocular video
or image, a variety of depth cues can be employed. Defocus
cues are employed to estimate the blur extent of an image
which is then converted to depth information. In [1], the
blur extent is estimated by analyzing the image intensity
histogram associated with the optical system. In [2], edge
defocus is estimated based on wavelet analysis, combined
with color segmentation. In [3], the input image is re-blurred
using a Gaussian kernel and the amount of defocus blur is
obtained from the gradient ratio between the input and re-
blurred images. All these three schemes assume that there is
defocused information in the image and the obtained depth

information will be affected by the original blur in the image,
such as motion blur. In addition, it is not easy to distinguish
the foreground from the background when the amount of
blur is similar [4]. Geometric cues include linear perspective,
known size, relative size/height in picture, interposition, and
texture gradient. However, the linear perspective is often
applied, in which parallel lines converge at infinite distance.
The converged point is referred to as the vanishing point
and the corresponding lines are denoted as vanishing lines.
By detecting the vanishing point and vanishing lines in
the image, the depth can be estimated according to the
position of the lines and the vanishing point. In [5], the
depth map is estimated by image classification combined
with vanishing lines and vanishing point detection. In [6],
vanishing point and superpixels are combined together to
generate a depth map. Atmospheric cues refer to the bluish
phenomenon generated by the light rays scattered by the
atmosphere. Using this information, it is possible to detect
whether objects are located at a close or far distance. In [7],
a scheme to remove the atmospheric haze in an image is
proposed using a dark channel prior. The interesting thing
is that a high-quality depth map can also be obtained as a
byproduct.

The above cues are applied to a single image mostly,
therefore they are denoted as pictorial cues. Although the
depth map of one single image could be good, the above
techniques do not consider the smoothness of the depth map
between consecutive frames in a video. Different from pic-
torial cues, another important cue is motion, which exploits
information from two or more images. In [8] [9], Structure
From Motion (SFM) is used to compute camera parameters
and estimate the 3D scene. The performance of this scheme
depends on the feature detection process which does not
work well for textureless regions such as blue sky. In [10],
the motion vector is directly used or modified to approximate
the disparity, which provides a good compatibility with the
standard. However, the motion-to-disparity technique does
not consider the smoothness in the same object. In addition,
the consistency of the depth map between different frames
is not satisfactory.

In this paper, we propose a depth map extracting scheme
using bidirectional energy minimization. Energy minimiza-
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Figure 1. The diagram of the proposed scheme.

tion is employed widely in stereo applications because it
allows soft constraints and provides spatial smoothness [11].
By considering both the previous frame and next frame into
the energy minimization framework, the proposed scheme
promises a much more stable depth map and reduces the
occlusion problems to a certain extent. Based on the assump-
tion that there are no large depth changes inside homoge-
neous color segments, a segmentation algorithm using color
information and initial depth information is adopted to refine
the depth map. Finally, detecting sky region is employed
to correct some possibly incorrect values for outdoor video
sequences.

II. THE PROPOSED SCHEME

The proposed scheme is shown in Fig. 1, and includes
bidirectional energy minimization, segmentation, detection
of sky region and depth refinement. The four steps will be
detailed in the following sections.

A. Bidirectional energy minimization

Energy minimization is widely used for stereo matching.
Since the motion between two frames can be considered as a
form of disparity over time, energy minimization is adopted
in our scheme as well. Different from the stereo matching
case, here we use the previous and next frame, together with
the current frame, to get smooth depth information. It should
be noted that the idea of multiple depth maps fusion is also
used in [12], where a set of depth maps from neighboring
camera positions are combined into a single depth map.

Given one frame n, let In denote its intensity value and
zn represent its depth value. The objective is to find the
depth value, zn, of each pixel in frame n with the help of the
previous frame n−1 and the next frame n+1. Generally, the
energy minimization function for the stereo case is defined
as

E(f) = Edata(f) + Esmooth(f) (1)

where f denotes the disparity or depth assignment func-
tion. The data term measures the color similarity, which is
calculated as the difference in intensity between one pixel
and its corresponding pixels. The smoothness term makes
the neighboring pixels tend to have similar depth. In the
stereo case, the corresponding pixels are generally related
by the disparity value between the left and right image. For
convenience and later use, the function between disparity

and depth is shown in (2), where t is the distance between
two cameras and f is the focal length.

d = t
f

z
(2)

To get a relative depth for the stereo case, the simple form
d = 1/z is generally used. Hence, depth and disparity are
used interchangeably. In our case, the previous and next
frame are used to get the depth value of the current frame.
Hence, there are two pairs of frames (n with n + 1 and n
with n−1). for simplicity, we will only consider the situation
that the camera moves in the same direction. Hence, the
current frame will be taken as right image and left image
respectively, relative to the previous frame and next frame.
The energy minimization terms in our case will be

Edata(f) =
∑
∀p

(In(p)− In+1(p− t1f1/z(p)))2

+(In(p)− In−1(p + t2f2/z(p)))2
(3)

Esmooth(f) =
∑

∀q∈N(p)

(z(p)− z(q))2 (4)

Here, p denotes the pixel and N(p) represents its neighbor-
hood. Since only the depth of the current frame is estimated
here, z is used instead of zn for simplicity, as well as d
instead of dn. The data item tries to get a depth map that
makes the intensity difference between current pixel and its
corresponding two pixels as small as possible. The smooth
item makes the neighborhood has similar depth map. In
reality, the item f is not changed abruptly between two
consecutive frames. If we assume the camera moves with
a uniform speed, the item t between any two frames should
be the same. Otherwise, some techniques could be used to
detect t and f as camera parameters[8] [9]. If we assume the
value of f and t for the two pairs to be the same, then we can
use the disparity and depth interchangeably. For clearness,
the energy items for the disparity are shown

Edata(f) =
∑
∀p

(In(p)− In+1(p− d(p)))2

+(In(p)− In−1(p + d(p)))2
(5)

Esmooth(f) =
∑

∀q∈N(p)

(d(p)− d(q))2 (6)

Notice the disparity values between the first and second pair
of frames have an opposite sign in the function due to the
relative position of the current frame, compared with the
previous and next frame.

Such a bidirectional energy minimization has two main
advantages. The first is that it provides a more stable depth
map. If some disparity values are not detected correctly
in the first pair of frames, it could be compensated by
considering the second pair of frames. In addition, to get
the depth of the current frame, both the previous and next
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frames are employed, which means 2
3 of the information is

overlapped in the previous and following depth extraction
process. This process promises a more stable depth map for
the whole sequence. The second advantage is that occlusions
can be reduced. Due to the structure of the scene, some
parts of a scene may be visible in only one of two cameras
(frames in our case). These pixels are denoted as occluded
region or occlusion, which could be seen in Fig.6. Since
these regions means that the pixels in one frame cannot find
their corresponding ones in another frame, their disparity
values are not accurate. By using previous and following
frames together, the occluded pixels in the first pair of frames
will not be occluded in the second pair of frames with
high probability if the scene or camera moves in the same
direction. Hence, the occluded region can be compensated
to a certain extent, by using two pairs of frames, which can
be seen in SectionIII.

To get the occluded region, we need to use (1) for each of
the two pairs of frames separately, as shown in the following
formulas

E(f ′) =
∑
∀p

(In(p)− In+1(p− d′(p)))2

+
∑

∀q∈N(p)

(d′n(p)− d′n(q))2 (7)

E(f ′′) =
∑
∀p

(In(p)− In−1(p + d′′(p)))2

+
∑

∀q∈N(p)

(d′′(p)− d′′(q))2 (8)

In stereo matching, it is easy to get the occluded region by
cross checking the generation process of the disparity map.
The cross checking computes the matches left-to-right and
right-to-left, and marks a pixel as occluded if the disparity
value from the two disparity maps are not consistent [11].
For our case, the cross checking is implemented on the
generation process of d′ and d′′ to get the two maps of
occlusion labels(occ′(p) and occ′′(p)). If occluded regions
appear on the objects’ left side for the first disparity gener-
ation process(d′), then the occluded regions generally lie on
the objects’ right side for the second disparity generation
process(d′′), and vice versa. For such occluded regions,
we can set the following conditions on the third energy

minimization function as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
∀p

2(In(p)− In+1(p− d(p)))2 +
∑

∀q∈N(p)

(d(p)− d(q))2,

if(occ′′(p) == 1 && occ′(p)! = 1)∑
∀p

2(In(p)− In−1(p + d(p)))2 +
∑

∀q∈N(p)

(d(p)− d(q))2,

if(occ′(p) == 1 && occ′′(p)! = 1) (9)∑
∀p

(In(p)− In+1(p− d(p)))2 + (In(p)− In−1(p + d(p)))2

+
∑

∀q∈N(p)

(d(p) − d(q))2, others

where occ′(p) == 1 denotes that pixel p is occluded in the
first pair of frames and occ′′(p) == 1 denotes that pixel p is
occluded in the second pair of frames. Take the first case as
an example, the data term just uses the first pair of frames
to calculate the depth value because this pixel is occluded
in the second pair of frames. Only when no occlusion is
detected, the average term will be employed. In conclusion,
we firstly use (7) and (8) to get two maps of occlusion labels
and two depth maps as well. Then the obtained occlusion
labels are used conditionally in (9) to get an updated depth
map. Hence, the energy minimization procedure needs to
be executed three times. In fact, the depth maps obtained
after the first two energy minimization steps in (7) and (8)
can be used directly, making it possible to eliminate one
energy minimization step. The new depth calculation process
is obtained as

d(p) =

⎧⎪⎨
⎪⎩

d′(p), if(occ′(p) == 1 && occ(p)! = 1)
d′′(p), if(occ(p) == 1 && occ′(p)! = 1) (10)

(d′ + d′′)/2, others

Hence, using (7) and (8) and (10), the depth map is obtained
and it will be used as an initial depth map in the next section.
To implement the energy minimization process, the powerful
optimization algorithms of graph cut [11] [13] is employed
to get a fast approximation.

B. Segmentation with initial depth map

Segment-based methods for stereo matching have at-
tracted a lot of attention [14],[15],[16]. They are based on
the assumption that the depth value is similar in one color
segmented region. Hence, we want to use segmentation to
refine the depth value too. The advantage of the segmen-
tation here is that we will take the initial depth map into
consideration.

The typical image or video segmentation methods lever-
age the color difference between pixels to identify the ob-
jects’ boundary, which is not accurate when the background
and the foreground share similar color. In this case, the depth
map could help to improve the segmentation. Although the
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color of different objects might be similar, the distance of
the object in the foreground and background is obviously
different. Hence, we employ the initial depth map obtained
from the bidirectional energy minimization to improve the
segmentation.

Our segmentation employs the framework of the graph-
based algorithm in [17]. This algorithm takes pixels as
vertices and two connected pixels as an edge. Each edge
uses the intensity difference of the two pixels as its weight.
Hence, the segmented region is composed of the edges with
a certain rule. The rule is that edges between two pixels
in the same component should have relatively low intensity
difference, and edges between pixels in different components
should have a high intensity difference.

By considering the initial depth map obtained from our
bidirectional energy minimization, we change the weight of
an edge as follows

w(p, q) = 0.5((r(p)− r(q))2 + (g(p)− g(q))2

+(b(p)− b(q))2) + 0.5(z(p)− z(q))2
(11)

where r, g and b denotes the color channel. Here, color im-
age and depth map are considered with equally importance
and the obtained segmentation results in Section III show
that it can provide much more reliable homogeneous regions.
More details about graph-based image segmentation can be
found in [17]. In addition, we believe that a much more
complex formula between color image and depth image
could provide much better segmentation results, which will
be part of our future work.

C. Correcting the region with infinite depth

It is obvious that the sky region has infinite depth in a
scene. However, the estimation for the depth of sky region
is often difficult due to its textureless feature. Hence, we
propose to correct the depth of this region by using the dark
channel prior [7].

In [7], the dark channel prior is observed and used to
remove haze in a hazed picture. However, the dark channel
prior is a phenomenon that occurs in a normal picture.
Hence, it could be used in our case. The dark chancel prior
is that at least one color channel has very low intensity at
some pixels in most of the non-sky patches. The following
function is used to describe the dark channel prior[7]

Jdark(p) = min
c∈{r,g,b}

( min
q∈Ω(p)

(Jc(q))) (12)

where J denotes the normal image and Ω(p) represents a
block region surrounding pixel p.

This function can be used in another way. If any of the
channels does not have very low intensity, it must be the
sky region or the white object. Since the white object is
easy to be detected, we will not discuss it here. With the
dark channel prior, we can find the sky region and assign
it a corrected depth value. This process does not require

Table I
DEPTH COMBINATION

Given initial depth map z, segmented regions s and sky region.
if pixel p is in sky region

z(p)=0;
end
for each segmentations s(i)

z(s(i))=average(z(s(i)))
end

any training process. Then the depth of other regions can
be adjusted correspondingly since the new infinite region is
found. For the image without sky region, this process will
not affect the performance of the proposed scheme. Hence,
there is no need to do a classification on the image.

D. Depth combination

After getting the initial depth map, the segmentation and
sky region, the final depth map will be obtained with a
simple combination process as shown in Table I.

III. EXPERIMENTAL RESULTS

In this section, the proposed scheme is implemented on
the monocular video sequences Flower Garden and Parkjoy.
Intermediary results for segmentation with initial depth map
are also included. Here, the depth value is obtained by
scaling the different disparity values in the range of [0, 255],
which are then relative values. Due to the limited resolution
and quality of the image on the printed paper, the original
pictures and some other results have been made available at
our website1.

In Fig. 2 and Fig. 3, the 6th and 20th frame of Flower
Garden are shown, as well as their corresponding depth
maps. These two frames are selected because they are used
in [9], [15] and [16], which permits a subjective comparison.
It is fair to compare our results with that of these three
papers because all of them use certain optimization method
and segmentation information. Moreover, the results of these
threee paper are very competive. In [9], a bundle optimiza-
tion framework is proposed, in which the disparity maps
is initialized in the color segmentation process and refined
by means of bundle optimization. In [15], a segment-based
stereo matching algorithm is proposed, where the energy
minimization is applied to different segmented regions. In
[16], the belief propogation algorithm and segmentation
information are employed to get the depth. From Fig. 2 and
Fig. 3, it can be seen that most of the regions in the scene
have a relative correct depth, even for the house and sky
components, which is better than that of [9], [15] and [16].

In Fig. 4 and Fig. 5, the 2nd and 40th frame from
high definition sequence of Parkjoy are shown, together
with their corresponding depth maps. These two frames

1http://multimedialab.elis.ugent.be/users/chlin/Depth map results
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(a) the 6th frame (b) the depth of the 6th frame

Figure 2. The 6th frame of Flower Garden and its depth map.

(a) the 20th frame (b) the depth of the 20th frame

Figure 3. The frame of Flower Garden and its depth map.

represent two different scenes of the sequence. It can be
seen that most of the regions can get a reliable depth
value. For the regions containing the people and water,
the depth is not completely correct. The water region is
difficult for the disparity calculation due to its similar color
value in the whole region. In addition, there is shadow in
our case, which further complicates the depth estimation.
The persons in the scene are independently moving objects,
hence their disparity should not be translated into depth
directly. To make the system works for the independently
moving objects, we need to detect the independently moving
objects and correct them according to their motion vectors.
This is part of our future work. For a good evaluation of our
scheme, more results are provided on our website.

In Fig. 6(a), the occlusion indicated in red color is shown
for the first pair of frames, in which the current frame is
taken as a left image. Hence, it is reasonable to see that
the left side of the objects is occluded occasionally. On
the contrary, the right side of the object in the scene is
occluded in the second pair of frames, shown in Fig. 6(b).
This explains the advantage of our bidirectional energy
minimization scheme that could reduce the occlusion to a
certain extent by considering two pairs of frames together.

In Fig. 7(a), the segmentation results calculated from the
color image combined with initial depth maps is shown. For
comparison, the segmentation result for color image alone,
which use the graph cut algorithm [11], is also provided in
Fig. 7(b). It can be seen that the results of segmentation
with initial depth map is more reliable, especially for the
tree. This is because the tree as an object has almost the
same disparity/depth value in the initial depth map which
helps the segmentation to differentiate the real boundary of

(a) the 2nd frame (b) the depth of the 2nd frame

Figure 4. The 2nd frame of Parkjoy and its depth map.

(a) the 40th frame (b) the depth of the 40th frame

Figure 5. The 40th frame of Parkjoy and its depth map.

the object.

IV. DISCUSSION

It should be noted that our algorithm can only handle the
video with sufficient camera movement, while the indepen-
dent object motion in the scene cannot get a correct depth.
However, with some independent motion detection, the depth
of this type of object can be corrected by modifying its
disparity value with its motion vector. The case such as static
frames probably could be processed with depth propagation
or more advanced algorithm, for example combined with
pictorial cues, which will be our future work.

V. CONCLUSION

This paper proposes an effective scheme to estimate
the depth map for monocular video sequences. It employs
bidirectional energy minimization and initial depth segmen-
tation, as well as sky region detection for outdoor video.
Our method provides a more reliable depth map with a few
advantages. Firstly, it considers the previous and following
frames when extracting the depth map of current frame.
Hence, the obtained depth map is more stable and occlusion
problems are reduced to a certain degree. Secondly, the
segmentation algorithm in our scheme employs both the
color image and initial depth map, which provides more
meaningful segmented regions. Lastly, detection of the sky
region based on dark channel prior enables to correct the
depth of sky region without any complex training. Even
though the sky region is not always existed in the video,
it will not take too much time to check or affect the
performance of the video sequence without sky region. The
experimental results demonstrate the effectiveness of the
proposed scheme.
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(a) Left occlusion (b) Right occlusion

Figure 6. The occlusion between the 6th and 7th frame, 6th and 5th frame
of Flower Garden(Red color parts denote the occluded regions).

(a) Color image+ initial depth map (b) Color image

Figure 7. Segmentation comparison between color image and color image
with initial depth map.
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